Okay, let’s craft a general and uniform guide for building a dataset class for image processing large models, focusing on PyTorch and PyTorch Lightning. This structure is highly adaptable.
Core Principles for Your Dataset Class:
- Uniformity: The interface (
__init__,__len__,__getitem__) should be consistent. - Flexibility: Easily accommodate different data sources, label types, and transformations.
- Efficiency: Load data on-the-fly, leverage multi-processing in
DataLoader, and handle large datasets without excessive memory usage. - Clarity: Code should be well-commented and easy to understand.
- Reproducibility: Ensure that given the same settings, the dataset behaves identically (especially important for train/val/test splits).
We’ll structure this around:
- PyTorch
Dataset: The fundamental building block. - PyTorch Lightning
LightningDataModule: The recommended way to organize data loading, splitting, andDataLoaderinstantiation for training, validation, and testing in a clean, reproducible, and shareable manner.
Guide for Building an Image Processing Dataset Class
Step 1: The Core PyTorch Dataset (torch.utils.data.Dataset)
This class is responsible for loading a single sample (image and its corresponding label/target) and applying initial transformations.
1import os
2import torch
3from torch.utils.data import Dataset
4from PIL import Image # Or OpenCV: import cv2
5import numpy as np
6import pandas as pd # Optional: if using CSV/TSV for manifests
7
8class CustomImageDataset(Dataset):
9 def __init__(self, image_paths, labels, transform=None, image_load_mode='RGB'):
10 """
11 Args:
12 image_paths (list or pd.Series): List of full paths to images.
13 labels (list or pd.Series): List of corresponding labels.
14 Can be integers for classification,
15 paths to masks for segmentation,
16 bounding boxes for detection, etc.
17 transform (callable, optional): Optional transform to be applied
18 on a sample.
19 image_load_mode (str): 'RGB', 'L' (grayscale), etc. for PIL.
20 For OpenCV, you'd handle color conversion manually.
21 """
22 self.image_paths = image_paths
23 self.labels = labels
24 self.transform = transform
25 self.image_load_mode = image_load_mode
26
27 # Sanity check
28 if len(self.image_paths) != len(self.labels):
29 raise ValueError("image_paths and labels must have the same length.")
30 if len(self.image_paths) == 0:
31 print("Warning: Initializing an empty dataset.")
32
33 def __len__(self):
34 """Returns the total number of samples in the dataset."""
35 return len(self.image_paths)
36
37 def __getitem__(self, idx):
38 """
39 Fetches the sample (image and label) at the given index.
40
41 Args:
42 idx (int): Index of the sample to fetch.
43
44 Returns:
45 tuple: (image, label) where image is the transformed image
46 and label is the processed label.
47 """
48 if torch.is_tensor(idx):
49 idx = idx.tolist()
50
51 img_path = self.image_paths[idx]
52 try:
53 # --- Image Loading ---
54 # Using Pillow (PIL)
55 image = Image.open(img_path).convert(self.image_load_mode)
56 # If using OpenCV:
57 # image = cv2.imread(img_path)
58 # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # if model expects RGB
59 # image = Image.fromarray(image) # Optional: convert to PIL Image if transforms expect it
60
61 except Exception as e:
62 print(f"Error loading image {img_path}: {e}")
63 # Handle error: return a placeholder, skip, or re-raise
64 # For simplicity, let's try to return a dummy if an error occurs
65 # This is often not ideal for training, better to filter out bad data beforehand.
66 if self.transform: # If transforms expect a PIL image, provide one
67 dummy_image = Image.new(self.image_load_mode, (224, 224), color='gray')
68 dummy_label = torch.tensor(-1) # Or appropriate dummy label
69 sample = {'image': dummy_image, 'label': dummy_label}
70 if self.transform:
71 sample = self.transform(sample)
72 return sample['image'], sample['label'] # Or however your transform structures it
73 else:
74 return torch.zeros((3, 224, 224)), torch.tensor(-1) # Basic tensor dummy
75
76 # --- Label Loading & Processing ---
77 # This part is highly dependent on your task:
78 raw_label = self.labels[idx]
79 label = self._process_label(raw_label)
80
81 # --- Apply Transformations ---
82 # Transforms often expect a dictionary or specific inputs (e.g., PIL image for torchvision)
83 # Albumentations is very flexible here.
84 sample = {'image': image, 'label': label}
85
86 if self.transform:
87 try:
88 # Albumentations typically takes image=np.array(image), mask=np.array(mask)
89 # Torchvision transforms typically take a PIL Image
90 # Adapt this based on your chosen transform library
91 # For example, if transform expects dict:
92 transformed_sample = self.transform(sample)
93 image = transformed_sample['image']
94 label = transformed_sample['label']
95 # Or if transform expects image directly and label is handled separately:
96 # image = self.transform(image)
97 except Exception as e:
98 print(f"Error applying transform to {img_path}: {e}")
99 # Handle transform error, similar to image loading error
100 # Fallback to untransformed or dummy if necessary
101 # Ensure image is a tensor if subsequent code expects it
102 if not isinstance(image, torch.Tensor): # Basic ToTensor if transform failed
103 image = ToTensor()(image) if not isinstance(image, torch.Tensor) else image
104
105 return image, label
106
107 def _process_label(self, raw_label):
108 """
109 Helper function to process raw labels into the desired format.
110 This should be customized based on the task.
111 """
112 # Example: Classification (labels are integers or strings to be mapped)
113 if isinstance(raw_label, (int, np.integer)):
114 return torch.tensor(raw_label, dtype=torch.long)
115 elif isinstance(raw_label, str) and os.path.isfile(raw_label): # Path to a mask
116 # Example: Segmentation (label is a path to a mask image)
117 mask = Image.open(raw_label).convert('L') # Grayscale mask
118 # You might convert mask to np.array here if transforms expect it
119 return mask # Or np.array(mask)
120 elif isinstance(raw_label, (list, np.ndarray)): # BBoxes, keypoints
121 # Example: Object Detection (label is [x, y, w, h, class_id])
122 return torch.tensor(raw_label, dtype=torch.float32)
123 # Add more cases as needed (text for captioning, etc.)
124 else:
125 # Default or error for unhandled label types
126 # print(f"Warning: Unhandled label type: {type(raw_label)}. Returning as is or a default.")
127 return raw_label # Or raise error, or return a default tensor
Step 2: Data Source Parsing (Inside __init__ or a helper)
How you get image_paths and labels depends on your dataset structure:
Directory Structure (e.g., for classification):
dataset_root/ class_A/ img1.jpg img2.png class_B/ img3.jpegYou’d parse this by walking directories.
self.class_to_idxwould be useful.Manifest File (CSV, JSON, TSV):
1# manifest.csv 2image_path,label 3path/to/image1.jpg,class_A 4path/to/image2.jpg,class_B 5path/to/mask1.png,mask_for_image1.png # For segmentationYou’d use
pandasto read this.
Example for directory structure parsing (add to CustomImageDataset.__init__ or a static method):
1# ... inside CustomImageDataset or as a helper ...
2@staticmethod
3def _load_data_from_dirs(data_root, class_to_idx=None):
4 image_paths = []
5 labels = []
6 if class_to_idx is None:
7 class_to_idx = {cls_name: i for i, cls_name in enumerate(sorted(os.listdir(data_root)))}
8
9 for class_name, class_idx in class_to_idx.items():
10 class_dir = os.path.join(data_root, class_name)
11 if os.path.isdir(class_dir):
12 for fname in os.listdir(class_dir):
13 if fname.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif')):
14 image_paths.append(os.path.join(class_dir, fname))
15 labels.append(class_idx) # Integer label for classification
16 return image_paths, labels, class_to_idx
17
18# In __init__:
19# if using directory structure:
20# self.image_paths, self.labels, self.class_to_idx = self._load_data_from_dirs(data_root)
Step 3: Transformations (Augmentation & Preprocessing)
Use libraries like torchvision.transforms or albumentations. Albumentations is generally preferred for complex tasks (segmentation, detection) as it can transform images and masks/bboxes simultaneously.
1from torchvision import transforms as T
2import albumentations as A
3from albumentations.pytorch import ToTensorV2
4
5# Example Transform function/class (can be passed to Dataset)
6
7# For Torchvision (simpler, often for classification)
8def get_torchvision_transforms(image_size=(224, 224), is_train=True):
9 common_transforms = [
10 T.Resize(image_size),
11 ]
12 if is_train:
13 augmentation_transforms = [
14 T.RandomHorizontalFlip(),
15 T.RandomRotation(15),
16 T.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
17 ]
18 else:
19 augmentation_transforms = []
20
21 normalization_transforms = [
22 T.ToTensor(), # Converts PIL Image or numpy.ndarray to tensor and scales to [0,1]
23 T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # ImageNet stats
24 ]
25 return T.Compose(common_transforms + augmentation_transforms + normalization_transforms)
26
27
28# For Albumentations (more powerful, good for segmentation/detection)
29# This version assumes the transform is applied to a dictionary {'image': ..., 'label': ...}
30class AlbumentationsTransform:
31 def __init__(self, image_size=(224, 224), is_train=True):
32 if is_train:
33 self.transform = A.Compose([
34 A.Resize(height=image_size[0], width=image_size[1]),
35 A.HorizontalFlip(p=0.5),
36 A.Rotate(limit=15, p=0.3),
37 A.RandomBrightnessContrast(p=0.3),
38 A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
39 ToTensorV2(), # Converts image & mask to PyTorch tensors
40 ])
41 else:
42 self.transform = A.Compose([
43 A.Resize(height=image_size[0], width=image_size[1]),
44 A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
45 ToTensorV2(),
46 ])
47
48 def __call__(self, sample):
49 image, label = sample['image'], sample['label']
50
51 # Albumentations expects numpy arrays for image and mask
52 image_np = np.array(image)
53
54 # Handle different label types for Albumentations
55 if isinstance(label, Image.Image): # e.g., segmentation mask
56 mask_np = np.array(label)
57 transformed = self.transform(image=image_np, mask=mask_np)
58 return {'image': transformed['image'], 'label': transformed['mask']}
59 elif isinstance(label, torch.Tensor) and label.ndim == 0: # Classification label
60 transformed = self.transform(image=image_np) # Only transform image
61 return {'image': transformed['image'], 'label': label} # Keep label as is
62 elif isinstance(label, (list, np.ndarray)): # BBoxes, keypoints
63 # Ensure bboxes are in a supported format for Albumentations
64 # e.g., transformed = self.transform(image=image_np, bboxes=label, category_ids=...)
65 # This part needs careful setup based on bbox format.
66 # For simplicity, let's assume only image transform for now if not mask
67 transformed = self.transform(image=image_np)
68 return {'image': transformed['image'], 'label': torch.as_tensor(label) if not isinstance(label, torch.Tensor) else label}
69 else: # Fallback for other types or if label doesn't need transforming with image
70 transformed = self.transform(image=image_np)
71 return {'image': transformed['image'], 'label': label}
72
73# Usage in CustomImageDataset:
74# self.transform = AlbumentationsTransform(is_train=True)
75# or
76# self.transform = get_torchvision_transforms(is_train=True)
77# And then in __getitem__, if using AlbumentationsTransform:
78# sample = self.transform({'image': image, 'label': label})
79# image, label = sample['image'], sample['label']
80# If using torchvision transforms (which usually take image directly):
81# image = self.transform(image)
82# label = torch.tensor(label, dtype=torch.long) # Ensure label is tensor
Key point: Your __getitem__ needs to know what format the transform callable expects (e.g., just an image, or a dict of image and mask). The AlbumentationsTransform class above shows how to handle dicts.
Step 4: The PyTorch Lightning LightningDataModule
This module encapsulates all data-related logic: downloading, cleaning, splitting, and creating DataLoaders.
1import pytorch_lightning as pl
2from torch.utils.data import DataLoader, random_split
3
4class CustomImageDataModule(pl.LightningDataModule):
5 def __init__(self,
6 data_root: str = None, # Path to data (e.g. dir of class folders or manifest parent)
7 manifest_train: str = None, # Path to train manifest CSV/JSON (optional)
8 manifest_val: str = None, # Path to val manifest CSV/JSON (optional)
9 manifest_test: str = None, # Path to test manifest CSV/JSON (optional)
10 train_val_test_split: tuple = (0.7, 0.15, 0.15), # If splitting from one source
11 image_size: tuple = (224, 224),
12 batch_size: int = 32,
13 num_workers: int = 4,
14 pin_memory: bool = True,
15 persistent_workers: bool = True, # For PyTorch 1.8+
16 image_load_mode: str = 'RGB',
17 transform_lib: str = 'albumentations' # 'torchvision' or 'albumentations'
18 ):
19 super().__init__()
20 self.save_hyperparameters() # Saves all __init__ args to self.hparams
21
22 self.data_root = data_root
23 self.manifest_train = manifest_train
24 self.manifest_val = manifest_val
25 self.manifest_test = manifest_test
26 self.train_val_test_split = train_val_test_split
27 self.image_size = image_size
28 self.batch_size = batch_size
29 self.num_workers = num_workers if num_workers is not None else os.cpu_count()
30 self.pin_memory = pin_memory
31 self.persistent_workers = persistent_workers if self.num_workers > 0 else False
32 self.image_load_mode = image_load_mode
33 self.transform_lib = transform_lib
34
35 self.train_transforms = self._get_transforms(is_train=True)
36 self.val_test_transforms = self._get_transforms(is_train=False)
37
38 self.dataset_train = None
39 self.dataset_val = None
40 self.dataset_test = None
41 self.class_to_idx = None # Will be populated in setup
42
43 def _get_transforms(self, is_train=True):
44 if self.transform_lib == 'albumentations':
45 return AlbumentationsTransform(image_size=self.image_size, is_train=is_train)
46 elif self.transform_lib == 'torchvision':
47 return get_torchvision_transforms(image_size=self.image_size, is_train=is_train)
48 else:
49 raise ValueError(f"Unsupported transform_lib: {self.transform_lib}")
50
51 def _load_manifest_data(self, manifest_path):
52 """Loads image paths and labels from a CSV manifest."""
53 if not manifest_path: return [], []
54 df = pd.read_csv(manifest_path)
55 # Assuming columns 'image_path' and 'label'
56 # If image_path is relative, make it absolute:
57 # df['image_path'] = df['image_path'].apply(lambda x: os.path.join(self.data_root, x) if self.data_root else x)
58 return df['image_path'].tolist(), df['label'].tolist()
59
60
61 def prepare_data(self):
62 """
63 Download, extract, or preprocess data here.
64 Called once per node. Good for shared dataset setup.
65 Example:
66 - torchvision.datasets.MNIST(self.data_dir, train=True, download=True)
67 - Check if self.data_root exists, if manifest files exist.
68 """
69 # This method is for things that should only happen once, e.g., downloading.
70 # If your data is already on disk, you might not need to do much here.
71 if self.data_root and not os.path.exists(self.data_root):
72 raise FileNotFoundError(f"Data root {self.data_root} not found.")
73 if self.manifest_train and not os.path.exists(self.manifest_train):
74 raise FileNotFoundError(f"Train manifest {self.manifest_train} not found.")
75 # etc. for val/test manifests
76
77 def setup(self, stage: str = None):
78 """
79 Assign train/val/test datasets for Dataloaders.
80 Called on every GPU in DDP.
81 - Load data from disk/manifests
82 - Create train/val/test splits
83 - Apply transforms
84 - Assign to self.dataset_train, self.dataset_val, self.dataset_test
85 """
86 image_paths_all, labels_all = [], []
87
88 if self.manifest_train and self.manifest_val: # Pre-defined splits
89 print("Loading data from pre-defined train/val manifests.")
90 train_img_paths, train_labels = self._load_manifest_data(self.manifest_train)
91 val_img_paths, val_labels = self._load_manifest_data(self.manifest_val)
92
93 self.dataset_train = CustomImageDataset(
94 image_paths=train_img_paths, labels=train_labels,
95 transform=self.train_transforms, image_load_mode=self.image_load_mode
96 )
97 self.dataset_val = CustomImageDataset(
98 image_paths=val_img_paths, labels=val_labels,
99 transform=self.val_test_transforms, image_load_mode=self.image_load_mode
100 )
101 if self.manifest_test:
102 test_img_paths, test_labels = self._load_manifest_data(self.manifest_test)
103 self.dataset_test = CustomImageDataset(
104 image_paths=test_img_paths, labels=test_labels,
105 transform=self.val_test_transforms, image_load_mode=self.image_load_mode
106 )
107
108 elif self.data_root: # Splitting from a single source directory
109 print(f"Loading data from directory {self.data_root} and splitting.")
110 # This example assumes classification task where CustomImageDataset._load_data_from_dirs is used
111 # You'll need to adapt this if your CustomImageDataset loads data differently
112 all_image_paths, all_labels, self.class_to_idx = CustomImageDataset._load_data_from_dirs(self.data_root)
113
114 if not all_image_paths:
115 raise ValueError(f"No images found in {self.data_root}")
116
117 # Create a temporary full dataset to leverage random_split
118 full_dataset = CustomImageDataset(
119 image_paths=all_image_paths, labels=all_labels,
120 transform=None, # Apply transforms later per split
121 image_load_mode=self.image_load_mode
122 )
123
124 total_len = len(full_dataset)
125 train_len = int(total_len * self.train_val_test_split[0])
126 val_len = int(total_len * self.train_val_test_split[1])
127 test_len = total_len - train_len - val_len
128
129 if train_len + val_len + test_len != total_len: # Adjust for rounding
130 test_len += (total_len - (train_len + val_len + test_len))
131
132 print(f"Splitting: Train={train_len}, Val={val_len}, Test={test_len}")
133
134 # Reproducible splits
135 generator = torch.Generator().manual_seed(42) # Use a fixed seed
136 self.dataset_train, self.dataset_val, self.dataset_test = random_split(
137 full_dataset, [train_len, val_len, test_len], generator=generator
138 )
139
140 # Apply correct transforms to each subset
141 # Note: random_split returns Subset objects. We need to assign transforms to the
142 # underlying dataset or wrap them. A common way is to set transform on Subset.
143 self.dataset_train.dataset.transform = self.train_transforms # type: ignore
144 self.dataset_val.dataset.transform = self.val_test_transforms # type: ignore
145 self.dataset_test.dataset.transform = self.val_test_transforms # type: ignore
146
147 else:
148 raise ValueError("Must provide either data_root (for auto-split) or train/val manifests.")
149
150 print(f"Train dataset size: {len(self.dataset_train) if self.dataset_train else 0}")
151 print(f"Validation dataset size: {len(self.dataset_val) if self.dataset_val else 0}")
152 print(f"Test dataset size: {len(self.dataset_test) if self.dataset_test else 0}")
153
154 def train_dataloader(self):
155 if not self.dataset_train: self.setup('fit')
156 return DataLoader(
157 self.dataset_train,
158 batch_size=self.batch_size,
159 shuffle=True,
160 num_workers=self.num_workers,
161 pin_memory=self.pin_memory,
162 persistent_workers=self.persistent_workers,
163 drop_last=True # Good for training stability with some batch-dependent layers
164 )
165
166 def val_dataloader(self):
167 if not self.dataset_val: self.setup('fit')
168 return DataLoader(
169 self.dataset_val,
170 batch_size=self.batch_size,
171 shuffle=False,
172 num_workers=self.num_workers,
173 pin_memory=self.pin_memory,
174 persistent_workers=self.persistent_workers
175 )
176
177 def test_dataloader(self):
178 if not self.dataset_test: self.setup('test')
179 return DataLoader(
180 self.dataset_test,
181 batch_size=self.batch_size,
182 shuffle=False,
183 num_workers=self.num_workers,
184 pin_memory=self.pin_memory,
185 persistent_workers=self.persistent_workers
186 )
187
188 # Optional: For prediction
189 def predict_dataloader(self):
190 # Usually same as test_dataloader or a specific dataset for prediction
191 if not self.dataset_test: self.setup('predict') # Or a self.dataset_predict
192 return DataLoader(
193 self.dataset_test, # Or self.dataset_predict
194 batch_size=self.batch_size,
195 shuffle=False,
196 num_workers=self.num_workers,
197 pin_memory=self.pin_memory,
198 persistent_workers=self.persistent_workers
199 )
Step 5: Using the DataModule in Training
1# Example:
2# 1. Prepare dummy data for classification
3# DATA_ROOT/
4# cat/
5# cat1.jpg, cat2.jpg
6# dog/
7# dog1.jpg, dog2.jpg
8
9# Create dummy images (run this once)
10# import os
11# from PIL import Image
12# DATA_ROOT = "dummy_data_root"
13# os.makedirs(os.path.join(DATA_ROOT, "cat"), exist_ok=True)
14# os.makedirs(os.path.join(DATA_ROOT, "dog"), exist_ok=True)
15# Image.new('RGB', (100, 100), color = 'red').save(os.path.join(DATA_ROOT, "cat/cat1.jpg"))
16# Image.new('RGB', (100, 100), color = 'green').save(os.path.join(DATA_ROOT, "cat/cat2.jpg"))
17# Image.new('RGB', (100, 100), color = 'blue').save(os.path.join(DATA_ROOT, "dog/dog1.jpg"))
18# Image.new('RGB', (100, 100), color = 'yellow').save(os.path.join(DATA_ROOT, "dog/dog2.jpg"))
19# Image.new('RGB', (100, 100), color = 'purple').save(os.path.join(DATA_ROOT, "dog/dog3.jpg"))
20
21# --- Main training script ---
22if __name__ == '__main__':
23 # Configure the DataModule
24 data_module = CustomImageDataModule(
25 data_root="dummy_data_root", # Use the dummy data path
26 train_val_test_split=(0.6, 0.2, 0.2), # For 5 images: 3 train, 1 val, 1 test
27 image_size=(64, 64),
28 batch_size=2,
29 num_workers=0, # Set to 0 for easier debugging, >0 for performance
30 transform_lib='torchvision' # or 'albumentations'
31 )
32
33 # (Optional) Inspect:
34 data_module.prepare_data() # Checks paths
35 data_module.setup() # Creates datasets and splits
36
37 print(f"Class to index mapping: {data_module.class_to_idx}")
38
39 # Get a sample from train dataloader
40 train_loader = data_module.train_dataloader()
41 for i, batch in enumerate(train_loader):
42 images, labels = batch
43 print(f"\nBatch {i+1}:")
44 print("Images shape:", images.shape) # e.g., torch.Size([2, 3, 64, 64])
45 print("Labels:", labels) # e.g., tensor([0, 1])
46 if i == 0: # Just show first batch
47 # To visualize (if you have matplotlib)
48 # import matplotlib.pyplot as plt
49 # img_to_show = images[0].permute(1, 2, 0).numpy() # C,H,W -> H,W,C
50 # # Denormalize if normalized (assuming ImageNet stats from example)
51 # mean = np.array([0.485, 0.456, 0.406])
52 # std = np.array([0.229, 0.224, 0.225])
53 # img_to_show = std * img_to_show + mean
54 # img_to_show = np.clip(img_to_show, 0, 1)
55 # plt.imshow(img_to_show)
56 # plt.title(f"Label: {labels[0].item()}")
57 # plt.show()
58 break
59
60 # --- Integrate with PyTorch Lightning Trainer ---
61 # model = YourLightningModel(...)
62 # trainer = pl.Trainer(max_epochs=10, accelerator='gpu', devices=1)
63 # trainer.fit(model, datamodule=data_module)
64 # trainer.test(datamodule=data_module) # if you have a test set and model.test_step
Key Considerations & Customizations:
- Label Types:
- Classification: Labels are usually integers.
self.class_to_idxis vital. - Segmentation: Labels are mask images (e.g.,
HxWorHxWxNumClasses). Ensure transforms correctly handle masks. - Object Detection: Labels are lists/tensors of bounding boxes (
[x_min, y_min, x_max, y_max, class_id]) per image. Transforms need to adjust bboxes. - Image Captioning: Labels are sequences of text tokens.
- Self-Supervised/Generative: May only need images, or image pairs.
- Classification: Labels are usually integers.
- Caching: For very slow
__getitem__(e.g., heavy online processing), consider caching processed samples to disk or memory (e.g., usingjoblib.Memoryor LMDB). This adds complexity. - Large Datasets & Disk I/O:
- Use efficient image formats (e.g., WebP can be smaller than JPG/PNG).
- Consider
num_workers > 0inDataLoaderfor parallel data loading. pin_memory=Truecan speed up CPU-to-GPU transfer.- If data is on network storage, local caching (e.g., copying to an SSD before training) might be beneficial.
- Error Handling in
__getitem__: Robustly handle corrupted images or missing files. You might choose to:- Skip the sample (requires careful indexing or filtering).
- Return a placeholder sample (as shown in the example).
- Log errors and filter out problematic files in a pre-processing step.
- Hugging Face
datasetsLibrary: For many standard datasets, or if your data is easily convertible to Arrow tables, thedatasetslibrary can be a powerful alternative or complement. It offers efficient loading, mapping, and caching. You can even wrap a Hugging Face dataset within a PyTorchDataset.
This comprehensive guide provides a solid, uniform foundation. You’ll adapt the _process_label, data parsing logic, and transform choices based on your specific image processing task and dataset format. The LightningDataModule then provides the standardized framework for using it in your training pipeline.