Okay, let’s craft a general and uniform guide for building a dataset class for image processing large models, focusing on PyTorch and PyTorch Lightning. This structure is highly adaptable.

Core Principles for Your Dataset Class:

  1. Uniformity: The interface (__init__, __len__, __getitem__) should be consistent.
  2. Flexibility: Easily accommodate different data sources, label types, and transformations.
  3. Efficiency: Load data on-the-fly, leverage multi-processing in DataLoader, and handle large datasets without excessive memory usage.
  4. Clarity: Code should be well-commented and easy to understand.
  5. Reproducibility: Ensure that given the same settings, the dataset behaves identically (especially important for train/val/test splits).

We’ll structure this around:

  • PyTorch Dataset: The fundamental building block.
  • PyTorch Lightning LightningDataModule: The recommended way to organize data loading, splitting, and DataLoader instantiation for training, validation, and testing in a clean, reproducible, and shareable manner.

Guide for Building an Image Processing Dataset Class

Step 1: The Core PyTorch Dataset (torch.utils.data.Dataset)

This class is responsible for loading a single sample (image and its corresponding label/target) and applying initial transformations.

  1import os
  2import torch
  3from torch.utils.data import Dataset
  4from PIL import Image # Or OpenCV: import cv2
  5import numpy as np
  6import pandas as pd # Optional: if using CSV/TSV for manifests
  7
  8class CustomImageDataset(Dataset):
  9    def __init__(self, image_paths, labels, transform=None, image_load_mode='RGB'):
 10        """
 11        Args:
 12            image_paths (list or pd.Series): List of full paths to images.
 13            labels (list or pd.Series): List of corresponding labels.
 14                                       Can be integers for classification,
 15                                       paths to masks for segmentation,
 16                                       bounding boxes for detection, etc.
 17            transform (callable, optional): Optional transform to be applied
 18                                            on a sample.
 19            image_load_mode (str): 'RGB', 'L' (grayscale), etc. for PIL.
 20                                   For OpenCV, you'd handle color conversion manually.
 21        """
 22        self.image_paths = image_paths
 23        self.labels = labels
 24        self.transform = transform
 25        self.image_load_mode = image_load_mode
 26
 27        # Sanity check
 28        if len(self.image_paths) != len(self.labels):
 29            raise ValueError("image_paths and labels must have the same length.")
 30        if len(self.image_paths) == 0:
 31            print("Warning: Initializing an empty dataset.")
 32
 33    def __len__(self):
 34        """Returns the total number of samples in the dataset."""
 35        return len(self.image_paths)
 36
 37    def __getitem__(self, idx):
 38        """
 39        Fetches the sample (image and label) at the given index.
 40
 41        Args:
 42            idx (int): Index of the sample to fetch.
 43
 44        Returns:
 45            tuple: (image, label) where image is the transformed image
 46                   and label is the processed label.
 47        """
 48        if torch.is_tensor(idx):
 49            idx = idx.tolist()
 50
 51        img_path = self.image_paths[idx]
 52        try:
 53            # --- Image Loading ---
 54            # Using Pillow (PIL)
 55            image = Image.open(img_path).convert(self.image_load_mode)
 56            # If using OpenCV:
 57            # image = cv2.imread(img_path)
 58            # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # if model expects RGB
 59            # image = Image.fromarray(image) # Optional: convert to PIL Image if transforms expect it
 60
 61        except Exception as e:
 62            print(f"Error loading image {img_path}: {e}")
 63            # Handle error: return a placeholder, skip, or re-raise
 64            # For simplicity, let's try to return a dummy if an error occurs
 65            # This is often not ideal for training, better to filter out bad data beforehand.
 66            if self.transform: # If transforms expect a PIL image, provide one
 67                dummy_image = Image.new(self.image_load_mode, (224, 224), color='gray')
 68                dummy_label = torch.tensor(-1) # Or appropriate dummy label
 69                sample = {'image': dummy_image, 'label': dummy_label}
 70                if self.transform:
 71                     sample = self.transform(sample)
 72                return sample['image'], sample['label'] # Or however your transform structures it
 73            else:
 74                return torch.zeros((3, 224, 224)), torch.tensor(-1) # Basic tensor dummy
 75
 76        # --- Label Loading & Processing ---
 77        # This part is highly dependent on your task:
 78        raw_label = self.labels[idx]
 79        label = self._process_label(raw_label)
 80
 81        # --- Apply Transformations ---
 82        # Transforms often expect a dictionary or specific inputs (e.g., PIL image for torchvision)
 83        # Albumentations is very flexible here.
 84        sample = {'image': image, 'label': label}
 85
 86        if self.transform:
 87            try:
 88                # Albumentations typically takes image=np.array(image), mask=np.array(mask)
 89                # Torchvision transforms typically take a PIL Image
 90                # Adapt this based on your chosen transform library
 91                # For example, if transform expects dict:
 92                transformed_sample = self.transform(sample)
 93                image = transformed_sample['image']
 94                label = transformed_sample['label']
 95                # Or if transform expects image directly and label is handled separately:
 96                # image = self.transform(image)
 97            except Exception as e:
 98                print(f"Error applying transform to {img_path}: {e}")
 99                # Handle transform error, similar to image loading error
100                # Fallback to untransformed or dummy if necessary
101                # Ensure image is a tensor if subsequent code expects it
102                if not isinstance(image, torch.Tensor): # Basic ToTensor if transform failed
103                    image = ToTensor()(image) if not isinstance(image, torch.Tensor) else image
104
105        return image, label
106
107    def _process_label(self, raw_label):
108        """
109        Helper function to process raw labels into the desired format.
110        This should be customized based on the task.
111        """
112        # Example: Classification (labels are integers or strings to be mapped)
113        if isinstance(raw_label, (int, np.integer)):
114            return torch.tensor(raw_label, dtype=torch.long)
115        elif isinstance(raw_label, str) and os.path.isfile(raw_label): # Path to a mask
116            # Example: Segmentation (label is a path to a mask image)
117            mask = Image.open(raw_label).convert('L') # Grayscale mask
118            # You might convert mask to np.array here if transforms expect it
119            return mask # Or np.array(mask)
120        elif isinstance(raw_label, (list, np.ndarray)): # BBoxes, keypoints
121            # Example: Object Detection (label is [x, y, w, h, class_id])
122            return torch.tensor(raw_label, dtype=torch.float32)
123        # Add more cases as needed (text for captioning, etc.)
124        else:
125            # Default or error for unhandled label types
126            # print(f"Warning: Unhandled label type: {type(raw_label)}. Returning as is or a default.")
127            return raw_label # Or raise error, or return a default tensor

Step 2: Data Source Parsing (Inside __init__ or a helper)

How you get image_paths and labels depends on your dataset structure:

  • Directory Structure (e.g., for classification):

    dataset_root/
        class_A/
            img1.jpg
            img2.png
        class_B/
            img3.jpeg
    

    You’d parse this by walking directories. self.class_to_idx would be useful.

  • Manifest File (CSV, JSON, TSV):

    1# manifest.csv
    2image_path,label
    3path/to/image1.jpg,class_A
    4path/to/image2.jpg,class_B
    5path/to/mask1.png,mask_for_image1.png # For segmentation
    

    You’d use pandas to read this.

Example for directory structure parsing (add to CustomImageDataset.__init__ or a static method):

 1# ... inside CustomImageDataset or as a helper ...
 2@staticmethod
 3def _load_data_from_dirs(data_root, class_to_idx=None):
 4    image_paths = []
 5    labels = []
 6    if class_to_idx is None:
 7        class_to_idx = {cls_name: i for i, cls_name in enumerate(sorted(os.listdir(data_root)))}
 8
 9    for class_name, class_idx in class_to_idx.items():
10        class_dir = os.path.join(data_root, class_name)
11        if os.path.isdir(class_dir):
12            for fname in os.listdir(class_dir):
13                if fname.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif')):
14                    image_paths.append(os.path.join(class_dir, fname))
15                    labels.append(class_idx) # Integer label for classification
16    return image_paths, labels, class_to_idx
17
18# In __init__:
19# if using directory structure:
20# self.image_paths, self.labels, self.class_to_idx = self._load_data_from_dirs(data_root)

Step 3: Transformations (Augmentation & Preprocessing)

Use libraries like torchvision.transforms or albumentations. Albumentations is generally preferred for complex tasks (segmentation, detection) as it can transform images and masks/bboxes simultaneously.

 1from torchvision import transforms as T
 2import albumentations as A
 3from albumentations.pytorch import ToTensorV2
 4
 5# Example Transform function/class (can be passed to Dataset)
 6
 7# For Torchvision (simpler, often for classification)
 8def get_torchvision_transforms(image_size=(224, 224), is_train=True):
 9    common_transforms = [
10        T.Resize(image_size),
11    ]
12    if is_train:
13        augmentation_transforms = [
14            T.RandomHorizontalFlip(),
15            T.RandomRotation(15),
16            T.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),
17        ]
18    else:
19        augmentation_transforms = []
20
21    normalization_transforms = [
22        T.ToTensor(), # Converts PIL Image or numpy.ndarray to tensor and scales to [0,1]
23        T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # ImageNet stats
24    ]
25    return T.Compose(common_transforms + augmentation_transforms + normalization_transforms)
26
27
28# For Albumentations (more powerful, good for segmentation/detection)
29# This version assumes the transform is applied to a dictionary {'image': ..., 'label': ...}
30class AlbumentationsTransform:
31    def __init__(self, image_size=(224, 224), is_train=True):
32        if is_train:
33            self.transform = A.Compose([
34                A.Resize(height=image_size[0], width=image_size[1]),
35                A.HorizontalFlip(p=0.5),
36                A.Rotate(limit=15, p=0.3),
37                A.RandomBrightnessContrast(p=0.3),
38                A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
39                ToTensorV2(), # Converts image & mask to PyTorch tensors
40            ])
41        else:
42            self.transform = A.Compose([
43                A.Resize(height=image_size[0], width=image_size[1]),
44                A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
45                ToTensorV2(),
46            ])
47
48    def __call__(self, sample):
49        image, label = sample['image'], sample['label']
50
51        # Albumentations expects numpy arrays for image and mask
52        image_np = np.array(image)
53
54        # Handle different label types for Albumentations
55        if isinstance(label, Image.Image): # e.g., segmentation mask
56            mask_np = np.array(label)
57            transformed = self.transform(image=image_np, mask=mask_np)
58            return {'image': transformed['image'], 'label': transformed['mask']}
59        elif isinstance(label, torch.Tensor) and label.ndim == 0: # Classification label
60            transformed = self.transform(image=image_np) # Only transform image
61            return {'image': transformed['image'], 'label': label} # Keep label as is
62        elif isinstance(label, (list, np.ndarray)): # BBoxes, keypoints
63            # Ensure bboxes are in a supported format for Albumentations
64            # e.g., transformed = self.transform(image=image_np, bboxes=label, category_ids=...)
65            # This part needs careful setup based on bbox format.
66            # For simplicity, let's assume only image transform for now if not mask
67            transformed = self.transform(image=image_np)
68            return {'image': transformed['image'], 'label': torch.as_tensor(label) if not isinstance(label, torch.Tensor) else label}
69        else: # Fallback for other types or if label doesn't need transforming with image
70            transformed = self.transform(image=image_np)
71            return {'image': transformed['image'], 'label': label}
72
73# Usage in CustomImageDataset:
74# self.transform = AlbumentationsTransform(is_train=True)
75# or
76# self.transform = get_torchvision_transforms(is_train=True)
77# And then in __getitem__, if using AlbumentationsTransform:
78# sample = self.transform({'image': image, 'label': label})
79# image, label = sample['image'], sample['label']
80# If using torchvision transforms (which usually take image directly):
81# image = self.transform(image)
82# label = torch.tensor(label, dtype=torch.long) # Ensure label is tensor

Key point: Your __getitem__ needs to know what format the transform callable expects (e.g., just an image, or a dict of image and mask). The AlbumentationsTransform class above shows how to handle dicts.

Step 4: The PyTorch Lightning LightningDataModule

This module encapsulates all data-related logic: downloading, cleaning, splitting, and creating DataLoaders.

  1import pytorch_lightning as pl
  2from torch.utils.data import DataLoader, random_split
  3
  4class CustomImageDataModule(pl.LightningDataModule):
  5    def __init__(self,
  6                 data_root: str = None,          # Path to data (e.g. dir of class folders or manifest parent)
  7                 manifest_train: str = None,   # Path to train manifest CSV/JSON (optional)
  8                 manifest_val: str = None,     # Path to val manifest CSV/JSON (optional)
  9                 manifest_test: str = None,    # Path to test manifest CSV/JSON (optional)
 10                 train_val_test_split: tuple = (0.7, 0.15, 0.15), # If splitting from one source
 11                 image_size: tuple = (224, 224),
 12                 batch_size: int = 32,
 13                 num_workers: int = 4,
 14                 pin_memory: bool = True,
 15                 persistent_workers: bool = True, # For PyTorch 1.8+
 16                 image_load_mode: str = 'RGB',
 17                 transform_lib: str = 'albumentations' # 'torchvision' or 'albumentations'
 18                ):
 19        super().__init__()
 20        self.save_hyperparameters() # Saves all __init__ args to self.hparams
 21
 22        self.data_root = data_root
 23        self.manifest_train = manifest_train
 24        self.manifest_val = manifest_val
 25        self.manifest_test = manifest_test
 26        self.train_val_test_split = train_val_test_split
 27        self.image_size = image_size
 28        self.batch_size = batch_size
 29        self.num_workers = num_workers if num_workers is not None else os.cpu_count()
 30        self.pin_memory = pin_memory
 31        self.persistent_workers = persistent_workers if self.num_workers > 0 else False
 32        self.image_load_mode = image_load_mode
 33        self.transform_lib = transform_lib
 34
 35        self.train_transforms = self._get_transforms(is_train=True)
 36        self.val_test_transforms = self._get_transforms(is_train=False)
 37
 38        self.dataset_train = None
 39        self.dataset_val = None
 40        self.dataset_test = None
 41        self.class_to_idx = None # Will be populated in setup
 42
 43    def _get_transforms(self, is_train=True):
 44        if self.transform_lib == 'albumentations':
 45            return AlbumentationsTransform(image_size=self.image_size, is_train=is_train)
 46        elif self.transform_lib == 'torchvision':
 47            return get_torchvision_transforms(image_size=self.image_size, is_train=is_train)
 48        else:
 49            raise ValueError(f"Unsupported transform_lib: {self.transform_lib}")
 50
 51    def _load_manifest_data(self, manifest_path):
 52        """Loads image paths and labels from a CSV manifest."""
 53        if not manifest_path: return [], []
 54        df = pd.read_csv(manifest_path)
 55        # Assuming columns 'image_path' and 'label'
 56        # If image_path is relative, make it absolute:
 57        # df['image_path'] = df['image_path'].apply(lambda x: os.path.join(self.data_root, x) if self.data_root else x)
 58        return df['image_path'].tolist(), df['label'].tolist()
 59
 60
 61    def prepare_data(self):
 62        """
 63        Download, extract, or preprocess data here.
 64        Called once per node. Good for shared dataset setup.
 65        Example:
 66        - torchvision.datasets.MNIST(self.data_dir, train=True, download=True)
 67        - Check if self.data_root exists, if manifest files exist.
 68        """
 69        # This method is for things that should only happen once, e.g., downloading.
 70        # If your data is already on disk, you might not need to do much here.
 71        if self.data_root and not os.path.exists(self.data_root):
 72            raise FileNotFoundError(f"Data root {self.data_root} not found.")
 73        if self.manifest_train and not os.path.exists(self.manifest_train):
 74            raise FileNotFoundError(f"Train manifest {self.manifest_train} not found.")
 75        # etc. for val/test manifests
 76
 77    def setup(self, stage: str = None):
 78        """
 79        Assign train/val/test datasets for Dataloaders.
 80        Called on every GPU in DDP.
 81        - Load data from disk/manifests
 82        - Create train/val/test splits
 83        - Apply transforms
 84        - Assign to self.dataset_train, self.dataset_val, self.dataset_test
 85        """
 86        image_paths_all, labels_all = [], []
 87
 88        if self.manifest_train and self.manifest_val: # Pre-defined splits
 89            print("Loading data from pre-defined train/val manifests.")
 90            train_img_paths, train_labels = self._load_manifest_data(self.manifest_train)
 91            val_img_paths, val_labels = self._load_manifest_data(self.manifest_val)
 92
 93            self.dataset_train = CustomImageDataset(
 94                image_paths=train_img_paths, labels=train_labels,
 95                transform=self.train_transforms, image_load_mode=self.image_load_mode
 96            )
 97            self.dataset_val = CustomImageDataset(
 98                image_paths=val_img_paths, labels=val_labels,
 99                transform=self.val_test_transforms, image_load_mode=self.image_load_mode
100            )
101            if self.manifest_test:
102                test_img_paths, test_labels = self._load_manifest_data(self.manifest_test)
103                self.dataset_test = CustomImageDataset(
104                    image_paths=test_img_paths, labels=test_labels,
105                    transform=self.val_test_transforms, image_load_mode=self.image_load_mode
106                )
107
108        elif self.data_root: # Splitting from a single source directory
109            print(f"Loading data from directory {self.data_root} and splitting.")
110            # This example assumes classification task where CustomImageDataset._load_data_from_dirs is used
111            # You'll need to adapt this if your CustomImageDataset loads data differently
112            all_image_paths, all_labels, self.class_to_idx = CustomImageDataset._load_data_from_dirs(self.data_root)
113
114            if not all_image_paths:
115                raise ValueError(f"No images found in {self.data_root}")
116
117            # Create a temporary full dataset to leverage random_split
118            full_dataset = CustomImageDataset(
119                image_paths=all_image_paths, labels=all_labels,
120                transform=None, # Apply transforms later per split
121                image_load_mode=self.image_load_mode
122            )
123
124            total_len = len(full_dataset)
125            train_len = int(total_len * self.train_val_test_split[0])
126            val_len = int(total_len * self.train_val_test_split[1])
127            test_len = total_len - train_len - val_len
128
129            if train_len + val_len + test_len != total_len: # Adjust for rounding
130                test_len += (total_len - (train_len + val_len + test_len))
131
132            print(f"Splitting: Train={train_len}, Val={val_len}, Test={test_len}")
133
134            # Reproducible splits
135            generator = torch.Generator().manual_seed(42) # Use a fixed seed
136            self.dataset_train, self.dataset_val, self.dataset_test = random_split(
137                full_dataset, [train_len, val_len, test_len], generator=generator
138            )
139
140            # Apply correct transforms to each subset
141            # Note: random_split returns Subset objects. We need to assign transforms to the
142            # underlying dataset or wrap them. A common way is to set transform on Subset.
143            self.dataset_train.dataset.transform = self.train_transforms # type: ignore
144            self.dataset_val.dataset.transform = self.val_test_transforms # type: ignore
145            self.dataset_test.dataset.transform = self.val_test_transforms # type: ignore
146
147        else:
148            raise ValueError("Must provide either data_root (for auto-split) or train/val manifests.")
149
150        print(f"Train dataset size: {len(self.dataset_train) if self.dataset_train else 0}")
151        print(f"Validation dataset size: {len(self.dataset_val) if self.dataset_val else 0}")
152        print(f"Test dataset size: {len(self.dataset_test) if self.dataset_test else 0}")
153
154    def train_dataloader(self):
155        if not self.dataset_train: self.setup('fit')
156        return DataLoader(
157            self.dataset_train,
158            batch_size=self.batch_size,
159            shuffle=True,
160            num_workers=self.num_workers,
161            pin_memory=self.pin_memory,
162            persistent_workers=self.persistent_workers,
163            drop_last=True # Good for training stability with some batch-dependent layers
164        )
165
166    def val_dataloader(self):
167        if not self.dataset_val: self.setup('fit')
168        return DataLoader(
169            self.dataset_val,
170            batch_size=self.batch_size,
171            shuffle=False,
172            num_workers=self.num_workers,
173            pin_memory=self.pin_memory,
174            persistent_workers=self.persistent_workers
175        )
176
177    def test_dataloader(self):
178        if not self.dataset_test: self.setup('test')
179        return DataLoader(
180            self.dataset_test,
181            batch_size=self.batch_size,
182            shuffle=False,
183            num_workers=self.num_workers,
184            pin_memory=self.pin_memory,
185            persistent_workers=self.persistent_workers
186        )
187
188    # Optional: For prediction
189    def predict_dataloader(self):
190        # Usually same as test_dataloader or a specific dataset for prediction
191        if not self.dataset_test: self.setup('predict') # Or a self.dataset_predict
192        return DataLoader(
193            self.dataset_test, # Or self.dataset_predict
194            batch_size=self.batch_size,
195            shuffle=False,
196            num_workers=self.num_workers,
197            pin_memory=self.pin_memory,
198            persistent_workers=self.persistent_workers
199        )

Step 5: Using the DataModule in Training

 1# Example:
 2# 1. Prepare dummy data for classification
 3# DATA_ROOT/
 4#   cat/
 5#     cat1.jpg, cat2.jpg
 6#   dog/
 7#     dog1.jpg, dog2.jpg
 8
 9# Create dummy images (run this once)
10# import os
11# from PIL import Image
12# DATA_ROOT = "dummy_data_root"
13# os.makedirs(os.path.join(DATA_ROOT, "cat"), exist_ok=True)
14# os.makedirs(os.path.join(DATA_ROOT, "dog"), exist_ok=True)
15# Image.new('RGB', (100, 100), color = 'red').save(os.path.join(DATA_ROOT, "cat/cat1.jpg"))
16# Image.new('RGB', (100, 100), color = 'green').save(os.path.join(DATA_ROOT, "cat/cat2.jpg"))
17# Image.new('RGB', (100, 100), color = 'blue').save(os.path.join(DATA_ROOT, "dog/dog1.jpg"))
18# Image.new('RGB', (100, 100), color = 'yellow').save(os.path.join(DATA_ROOT, "dog/dog2.jpg"))
19# Image.new('RGB', (100, 100), color = 'purple').save(os.path.join(DATA_ROOT, "dog/dog3.jpg"))
20
21# --- Main training script ---
22if __name__ == '__main__':
23    # Configure the DataModule
24    data_module = CustomImageDataModule(
25        data_root="dummy_data_root", # Use the dummy data path
26        train_val_test_split=(0.6, 0.2, 0.2), # For 5 images: 3 train, 1 val, 1 test
27        image_size=(64, 64),
28        batch_size=2,
29        num_workers=0, # Set to 0 for easier debugging, >0 for performance
30        transform_lib='torchvision' # or 'albumentations'
31    )
32
33    # (Optional) Inspect:
34    data_module.prepare_data() # Checks paths
35    data_module.setup()        # Creates datasets and splits
36
37    print(f"Class to index mapping: {data_module.class_to_idx}")
38
39    # Get a sample from train dataloader
40    train_loader = data_module.train_dataloader()
41    for i, batch in enumerate(train_loader):
42        images, labels = batch
43        print(f"\nBatch {i+1}:")
44        print("Images shape:", images.shape) # e.g., torch.Size([2, 3, 64, 64])
45        print("Labels:", labels)             # e.g., tensor([0, 1])
46        if i == 0: # Just show first batch
47            # To visualize (if you have matplotlib)
48            # import matplotlib.pyplot as plt
49            # img_to_show = images[0].permute(1, 2, 0).numpy() # C,H,W -> H,W,C
50            # # Denormalize if normalized (assuming ImageNet stats from example)
51            # mean = np.array([0.485, 0.456, 0.406])
52            # std = np.array([0.229, 0.224, 0.225])
53            # img_to_show = std * img_to_show + mean
54            # img_to_show = np.clip(img_to_show, 0, 1)
55            # plt.imshow(img_to_show)
56            # plt.title(f"Label: {labels[0].item()}")
57            # plt.show()
58            break
59
60    # --- Integrate with PyTorch Lightning Trainer ---
61    # model = YourLightningModel(...)
62    # trainer = pl.Trainer(max_epochs=10, accelerator='gpu', devices=1)
63    # trainer.fit(model, datamodule=data_module)
64    # trainer.test(datamodule=data_module) # if you have a test set and model.test_step

Key Considerations & Customizations:

  • Label Types:
    • Classification: Labels are usually integers. self.class_to_idx is vital.
    • Segmentation: Labels are mask images (e.g., HxW or HxWxNumClasses). Ensure transforms correctly handle masks.
    • Object Detection: Labels are lists/tensors of bounding boxes ([x_min, y_min, x_max, y_max, class_id]) per image. Transforms need to adjust bboxes.
    • Image Captioning: Labels are sequences of text tokens.
    • Self-Supervised/Generative: May only need images, or image pairs.
  • Caching: For very slow __getitem__ (e.g., heavy online processing), consider caching processed samples to disk or memory (e.g., using joblib.Memory or LMDB). This adds complexity.
  • Large Datasets & Disk I/O:
    • Use efficient image formats (e.g., WebP can be smaller than JPG/PNG).
    • Consider num_workers > 0 in DataLoader for parallel data loading.
    • pin_memory=True can speed up CPU-to-GPU transfer.
    • If data is on network storage, local caching (e.g., copying to an SSD before training) might be beneficial.
  • Error Handling in __getitem__: Robustly handle corrupted images or missing files. You might choose to:
    • Skip the sample (requires careful indexing or filtering).
    • Return a placeholder sample (as shown in the example).
    • Log errors and filter out problematic files in a pre-processing step.
  • Hugging Face datasets Library: For many standard datasets, or if your data is easily convertible to Arrow tables, the datasets library can be a powerful alternative or complement. It offers efficient loading, mapping, and caching. You can even wrap a Hugging Face dataset within a PyTorch Dataset.

This comprehensive guide provides a solid, uniform foundation. You’ll adapt the _process_label, data parsing logic, and transform choices based on your specific image processing task and dataset format. The LightningDataModule then provides the standardized framework for using it in your training pipeline.